
Dynamics of critical fluctuations in polymer solutions

A. F. Kostko,1,* M. A. Anisimov,2,† and J. V. Sengers2

1Chemical and Life Sciences Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, USA
2Institute for Physical Science and Technology and Department of Chemical and Biomolecular Engineering,

University of Maryland, College Park, Maryland 20742, USA
�Received 11 May 2007; published 31 August 2007�

Using dynamic light scattering we have investigated the time dependence of fluctuations near the critical
point of phase separation in solutions of polystyrene in cyclohexane with polymer molecular weights ranging
from 196 000 to 11.4�106 g mol−1. At the lowest polymer molecular weight the dynamic correlation function
follows a single-exponential decay with a decay rate that can be represented by the mode-coupling theory of
critical dynamics but with a mesoscopic viscosity that characterizes the hydrodynamic environment of the
polymers in the solution. At all higher polymer molecular weights two distinct dynamic modes are observed,
a slow and a fast mode, that originate from a coupling of the critical concentration fluctuations with viscoelas-
tic relaxation of the polymer chain in solutions. This coupling causes an additional slowing down of the
fluctuations on top of the well-known critical slowing down expected in the absence of a coupling between the
two modes. From an analysis of the time dependence of the experimental dynamic correlation functions in
terms of a theory of coupling of dynamic modes we are able to determine the viscoelastic properties of the
polymers in the solution. These viscoelastic properties diverge in the theta-point limit of infinite polymer
molecular weight.

DOI: 10.1103/PhysRevE.76.021804 PACS number�s�: 61.25.Hq, 05.40.�a, 05.70.Jk, 61.20.Lc

I. INTRODUCTION

Critical phase-separating behavior of polymer solutions
differs from critical phase-separating behavior of simple mo-
lecular liquid mixtures. In liquid mixtures the critical behav-
ior is controlled by a single mesoscopic length scale: the
spatial correlation length � of the order-parameter fluctua-
tions, which for nearly incompressible liquid mixtures can in
first approximation be identified with the correlation length
of concentration fluctuations. In polymer solutions there is
another relevant mesoscopic length scale, namely, the size of
the polymer coil �radius of gyration Rg� that depends on the
degree of polymerization N. The degree of polymerization is
an additional parameter that controls the phase behavior of
polymer solutions. With increasing values of N the critical
concentration decreases to zero, while the critical tempera-
ture approaches the theta temperature for solutions of poly-
mers with infinite chain length �1,2�. Competition between
these two mesoscopic length scales causes a crossover from
Ising-like critical behavior to theta-point tricritical behavior
in polymer solutions �3,4�. At temperatures sufficiently close
to the critical temperature where the correlation length � may
become much larger than the radius of gyration, polymer
solutions exhibit the same universal Ising-like critical behav-
ior as simple liquid mixtures. However, with increasing de-
gree of polymerization the temperature range where Ising-
like critical behavior can be observed becomes increasingly
smaller and vanishes at the theta point. At temperatures near
the critical point where the correlation length is much larger
than the size of the monomers, but smaller than the radius of

gyration, one observes mean-field critical behavior which at
infinite polymerization becomes theta-point tricritical behav-
ior that is mean-field-like with logarithmic corrections as
originally predicted by de Gennes �5�. A quantitative theory
for the crossover from Ising-like critical behavior to theta-
point tricritical behavior has been developed in our research
group �6,7�. We have verified the theoretical predictions by
measuring the intensity of scattered light in polystyrene so-
lutions in cyclohexane with various polymer molecular
weights �7�. Specifically, the experiments have confirmed
that the critical behavior of the susceptibility and the corre-
lation length deduced from the light-scattering measurements
indeed exhibit crossover from Ising-like critical behavior to
theta-point tricritical behavior when � becomes of the order
of the radius of gyration. These experiments have also con-
firmed the scaled dependence of the amplitudes of the critical
power laws on the degree of polymerization as predicted by
de Gennes �5,8�. Hence we may conclude that the thermody-
namics of critical phase-separating behavior in polymer so-
lutions is now well-understood.

In the present paper we focus on the dynamic critical
behavior of polymer solutions, which can be studied by per-
forming dynamic light-scattering experiments in near-critical
polymer solutions. We have performed such dynamic light-
scattering experiments in the same set of polystyrene-
cyclohexane solutions previously used for measuring the
light-scattering intensities. Just as the static critical behavior
of polymer solutions is controlled by a competition between
two length scales, we may expect that the dynamic critical
behavior will be controlled by a competition between two
time scales: a relaxation time associated with the diffusive
decay of the critical concentration fluctuations and a vis-
coelastic �structural� relaxation time associated with the en-
tanglement network of the polymer chains. In heteropolymer
solutions the situation may be more complex �9�, but here we
only consider homopolymer solutions, like solutions of poly-
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styrene in cyclohexane. The diffusive relaxation time of the
concentration fluctuations diverges at the critical temperature
as a result of the critical slowing down of the concentration
fluctuations. The characteristic viscoelastic relaxation time
diverges as the theta point is approached, since the theta
point is the critical point of the solution of polymers with
infinite chain length. Coupling between these two modes re-
sults in a different type of critical dynamics in polymer so-
lutions.

Coupling of the diffusion and viscoelastic modes has been
observed in noncritical polymer solutions �10–12�. In con-
centrated polymer solutions the viscoelastic relaxation mode
is always effectively coupled with the diffusion mode and is
observed as a satellite of the diffusion mode. In dilute poly-
mer solutions the viscoelastic entanglements appear mainly
at the length scale of a single polymer coil, because the like-
lihood of intermolecular entanglement is very small. There-
fore in dilute polymer solutions effective coupling between
the diffusion and viscoelastic modes is observed only at
wave numbers corresponding to the length scale of single-
polymer coils. At larger length scales the coupling is no
longer effective and only the diffusion mode is observed in
dynamic light scattering of dilute polymer solutions.

Critical polymer solutions have concentrations that are in
the semidilute concentration range. At such polymer concen-
trations a coupling between diffusion and viscoelasticity may
be expected to occur when the two relaxation times become
of the same order of magnitude. Dynamic light-scattering
experiments that have been reported by Lempert and Wang
�13� in near-critical polystyrene solutions in cyclohexane
with a low polymer weight and by Lao et al. �14� with a
moderate polymer molecular weight did not show a coupling
of the diffusion mode with a relaxation mode. Experiments
reported by Takahashi and Nose �15� and by Ritzl et al. �16�
in polystyrene solutions with polymer molecular weights of
the order of 106 g mol−1 have revealed a bimodal decay of
the fluctuations. It appears that deviations of the critical be-
havior of the viscosity of polymer solutions from the univer-
sal critical viscosity behavior expected for simple liquid mix-
tures can also be attributed to a dynamical coupling between
the critical concentration fluctuations and an additional vis-
coelastic mode intrinsic to polymer solutions �17,18�.

The diffusion relaxation time varies strongly with the dis-
tance of the temperature T from the critical temperature Tc.
Thus the decay time of the diffusion mode can be tuned over
a broad range of time scales by varying the temperature, so
that it may intersect with the viscoelastic relaxation time,
which is insensitive to the proximity to the critical tempera-
ture. We shall see that the decay times of the coupled modes
are significantly different from those of the unperturbed
modes and the values of the actual relaxation times of the
coupled modes will never cross each other. Such a phenom-
enon of “avoided crossing” of modes is well-known for os-
cillating modes in the frequency domain in optical spectros-
copy �19,20�. We shall show the corresponding phenomenon
for the relaxation modes in the time domain. “Avoided cross-
ing” appears to be a very general phenomenon either in the
time domain or in the frequency domain. For instance, it has
been observed in the dynamics of sheared polymer solutions
�21�. The two hydrodynamic modes associated with mass

diffusion and thermal diffusion may exhibit avoided crossing
in highly compressible fluid mixtures near the vapor-liquid
critical point �22�.

This paper is organized as follows. The theory for critical
dynamics in molecular solutions is reviewed in Sec. II A. In
Sec. II B we review the theory for dynamic coupling be-
tween concentration fluctuations and a viscoelastic mode in
noncritical macromolecular solutions. The experimental
method and procedure for our dynamic light-scattering ex-
periments are discussed in Sec. III. In Sec. IV we present a
detailed analysis of the experimental dynamic correlation
functions and the dependence of the decay rates on tempera-
ture, wave number, and polymer weight. Our conclusions are
summarized in Sec. V.

The principal conclusions of our dynamic light-scattering
studies have been reported earlier in a Rapid Communication
�23�. In the present paper we give a full account of the ex-
periments and their interpretation.

II. THEORY

A. Dynamics of critical fluctuations in liquid mixtures

The dynamics of the critical fluctuations in a mixture of
molecular liquids in the vicinity of a critical point of mixing
is well-understood. The concentration fluctuations with wave
number q decay exponentially with a single diffusive relax-
ation time

�q =
1

D�q,��q2 , �1�

where D is a �q-dependent� diffusion coefficient that varies
with temperature primarily through the correlation length �
�24�. The diffusion coefficient D is the ratio of a kinetic
Onsager coefficient L, to be designated as “concentration
conductivity,” and the susceptibility � �24�. The concentra-
tion conductivity L can be decomposed into a critical contri-
bution �cL due to long-range critical fluctuations and a non-
critical background contribution or bare coefficient Lb
associated with short-range fluctuations �24–26�. This de-
composition causes also a decomposition of the diffusion
coefficient D into a critical contribution �cD and a back-
ground diffusion coefficient Db:

D = �cD + Db. �2�

The separation of the transport properties into a critical con-
tribution and a noncritical background was originally pro-
posed by Sengers and Keyes �27� and it resolved some dis-
crepancies between the predictions from the mode-coupling
theory of critical dynamics and the early dynamic light-
scattering experiments �24,26,28,29�. Recent molecular dy-
namics calculations have again demonstrated the importance
of accounting for a noncritical background contribution to
the concentration conductivity in the interpretation of
diffusion-coefficient data near critical points �30�.

Both the mode-coupling theory of critical dynamics and
the dynamic renormalization-group �RG� theory predict that
in the hydrodynamic limit q→0 asymptotically close to the
critical point �cD should satisfy a Stokes-Einstein relation of
the form �31�
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�cD =
RDkBT

6���
, �3�

where � is the shear viscosity, kB is Boltzmann’s constant,
and where RD is a universal dynamic amplitude ratio. In first
approximation mode-coupling theory yields RD=1.00 �25�,
but when memory and nonlocal effects are included one ob-
tains an improved estimate of RD=1.03 �32�. The early the-
oretical values obtained from RG theory have varied from
0.8 to 1.2 owing to various approximations, as reviewed by
Folk and Moser �33�. The calculation of Folk and Moser
with the fewest approximations has yielded RD=1.063. Fol-
lowing Luettmer-Strathmann et al. �34� we adopt here the
estimate RD=1.05 as a compromise between the two theoret-
ical predictions, as was also done recently by Das et al. �30�.
Asymptotically close to the critical temperature the correla-
tion length diverges as a function of the reduced temperature
distance 	= �T−Tc� /T in accordance with a power law:

� = �0	−
, �4�

where 
=0.630 and where �0 is a system-dependent ampli-
tude �35�. The viscosity diverges as

� = �b�Q0��z�, �5�

where Q0 is a system-dependent amplitude and z�=0.068
�36�. Unlike the concentration conductivity L, the viscosity �
exhibits a multiplicative anomaly, that is, the amplitude of
the power law is proportional to the noncritical background
viscosity �b �37�. From Eqs. �3� and �5� it follows that at the
critical point the diffusion coefficient vanishes as �−�1+z��.

Mode-coupling theory predicts that for finite wave num-
bers Eq. �3� can be generalized to �26,32�

�cD�q,�� =
RDkBT

6���
K�q���1 + �q�

2
�2�z�/2

��qD�� , �6�

where K�q��	K�x�= �3/ �4x2�� �1+x2+ �x3−x−1�arctan x�,
known as the Kawasaki function �25�, and where the factor
�1+ �x /2�2�z�/2 accounts for the fact that the viscosity � in
Eq. �3� is not the background viscosity �b but the actual
viscosity � which diverges weakly in accordance with Eq.
�5�. In Eq. �6� we have also entered a factor ��qD�� that
accounts for deviations from asymptotic dynamic critical be-
havior due to the presence of a finite cutoff wave number qD
in the mode-coupling integrals for the long-range dynamical
fluctuations. In first approximation �34,38,39�

��qD�� =
2

�
arctan�qD�� . �7�

In dynamic light-scattering experiments in simple molecular
liquid mixtures in the vicinity of the critical point the dy-
namical crossover function � is close to unity and can be
omitted. However, here we retain this nonasymptotic correc-
tion since the cutoff length scale qD

−1=�D in polymer solu-
tions is significantly larger than the cutoff length in molecu-
lar liquid mixtures. For our polymer solutions the
corresponding nonasymptotic generalization of the power
law �4� for the correlation length reads �6,7�

� = �̄0	−1/2�1 + �qD��2��2
−1�/4
, �8�

where �̄0	−1/2 is the classical power law for the correlation
function in the mean-field limit �40�. Here we are assuming
that the cutoff length qD

−1=�D for the dynamic critical behav-
ior equals the cutoff length �D for the static Ising-like critical
behavior as determined from our measurements of the light-
scattering intensities �7�. This assumption is physically plau-
sible. For instance, in the case of carbon dioxide Luettmer-
Strathmann et al. �34� found a dynamic cutoff length of
0.20 nm to be compared with a cutoff length 0.20 nm found
by Chen et al. �41� for the static Ising-like critical behavior.

The background contribution Db in Eq. �2� for the diffu-
sion coefficient can be estimated as

Db =
kBT

16�b�
�1 + q2�2

qC�
� , �9�

where the wave number qC is related to the cutoff wave
number qD and the amplitude Q0 in the power law �5� for the
viscosity � by �32�

Q0
−1 =

1

2
e4/3�qC

−1 + qD
−1� . �10�

It is expected that the critical concentration fluctuations even
in simple molecular liquid mixtures will exhibit some devia-
tions from exponential decay at temperatures extremely close
to the critical temperature �42�. However, this effect is very
small and outside the resolution of most dynamic light-
scattering experiments �43�.

B. Coupling of dynamic modes in polymer solutions

Dynamic coupling between the concentration fluctuations
and a viscoelastic mode in noncritical polymer solutions has
been investigated theoretically by Brochard and de Gennes
�44� and experimentally by Adam and Delsanti �10�, Nicolai
et al. �11�, Jian et al. �12�, and Takenaka et al. �45�. Appli-
cation of the theory to treat the dynamic coupling between
the concentration fluctuations and an additional slow vis-
coelastic mode in polymer solutions near the critical point
has been considered by Tanaka et al. �17�. According to the
treatment of Tanaka et al., the normalized time-dependent
intensity correlation function g2�t� can be written in the form

g2�t� − 1 = � f+ exp�−
t

�+
� + f− exp�−

t

�−
��2

�11�

with decay times �+ and �− given by

1

�±
=

1 + q2�ve
2 +

�ve

�q
±
�1 + q2�ve

2 +
�ve

�q
�2

− 4
�ve

�q

2�ve
,

�12�

and with corresponding amplitudes f+ and f− given by
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f± = ±

�ve

�±
− �1 + q2�ve

2 �

�ve

�+
−

�ve

�−

. �13�

We are following here the notation of Tanaka et al. �17� by
designating the relaxation time of the faster mode �smaller
relaxation time� as �+ and the relaxation time of the slower
mode �larger relaxation time� as �−. In Eqs. �12� and �13�, �q
represents the q-dependent diffusion relaxation time speci-
fied by the equations in Sec. II A, �ve a q-independent vis-
coelastic relaxation time, and �ve a mesoscopic viscoelastic
length �46�. The decay times �+ and �− of the coupled modes
differ from the correlation times �q and �ve of the original
parent modes. Moreover, the coupling not only shifts the
modes, but also controls their amplitudes. With such a cou-
pling present, it is no longer appropriate to refer to one mode
as a diffusion mode and the other as a viscoelastic relaxation
mode. Both modes together represent the phenomenon of
coupled dynamics.

III. EXPERIMENTAL METHOD

The dynamic light-scattering experiments were performed
in the same polymer-solution samples for which the static
light-scattering data were obtained as reported in a preceding
publication �7�. The relevant physical parameters for the
samples, labeled PS1, PS2, PS3, PS4, and PS5, are given in
part �A� of Table I. The properties listed include the polymer
molecular weight Mw, ranging from 0.1959�106 to 11.4
�106 g mol−1, the degree of polydispersity Mw/Mn, the de-
gree of polymerization N, the critical volume fraction �c, the
critical temperature Tc, and the radius of gyration Rg. In ad-
dition we have listed the amplitude �0 in the asymptotic

power law �4� for the correlation length, the amplitude �̄0 in
the expression �8� for the crossover correlation length, and
the cutoff length qD

−1=�D as determined from the intensity of

the scattered light �7�. A detailed description of the sample
preparation and of the optical light-scattering arrangement
has been presented in previous publications �7,47�.

The wave number q of the fluctuations probed by light
scattering is related to the scattering angle  by the relation
q=4�n�−1 sin� /2�, where n is the refractive index of the
solution and � the wavelength of the incident light in vacuo.
The polystyrene-cyclohexane solutions with critical concen-
trations are located in quartz optical cells �Starna� with an
outside square cross section of 12.5�12.5 mm and an inside
cross section of 10�2 mm. The cross section of the optical
cell and the scattering geometry are shown in Fig. 1. The
incident laser beam has an angle of 45° with the external cell
wall and the scattering is detected in the direction perpen-
dicular to the cell wall as indicated in Fig. 1. This arrange-
ment assures that the optical path of the laser beam inside the
sample as well as the maximal depth of the sample seen by
the photomultiplier �PMT� are not much longer than 2 mm.
This is important to minimize multiple scattering. We prefer
a cell with inner space in the form of a thin slab instead of a
cylinder as used in �48�, where in a similar polymer solution
a fast dynamic mode was observed and attributed to multiple
scattering. The dynamic light-scattering experiments were

TABLE I. �A� Physical parameters for the polystyrene-cyclohexane solutions. �B� Viscoelastic parameters
obtained from the dynamic light-scattering experiments.

PS1 PS2 PS3 PS4 PS5

�A� Mw�10−6 �g mol−1� 0.1959 1.124 1.95 3.90 11.4

Mw/Mn
a 1.02 1.06 1.04 1.05 1.09

N�10−4 0.188 1.08 1.88 3.75 11.0

�c 0.0664 0.0332 0.0239 0.0178 0.0111

Tc �K� 296.470 303.085 304.305 304.800 305.954

Rg �nm� 12 28 37 52 89

�0 �nm� 0.66 0.89 0.99 1.07 1.40

�̄0 �nm� 0.99 1.5 1.8 2.0 2.9

�D=qD
−1 �nm� 4.8 11 16 23 44

�B� �ve �nm� 62 107 127 218

�ve �nm� 0.5 1.3 2.9 10

�0 9 20 34 60 115

aMw and Mn are the mass average and the number average polymer molecular weights.

FIG. 1. Schematic representation of the light beams and the
optical cell. The laser beams are opened in sequence by computer-
controlled shutters.
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performed at the same scattering angles, nominally 30° and
150°, at which the intensity of the scattered light was mea-
sured earlier �7�. The actual scattering angles never differed
from these nominal values by more than 1°. The scattering
angles were converted into corresponding wave numbers q
with the aid of refractive-index data obtained in complemen-
tary measurements with an Abbé refractometer. The scatter-
ing angles have a weak dependence on temperature caused
by refraction, but the actual variation of the corresponding
wave number q with temperature can in practice be neglected
in the analysis of the dynamic light-scattering data. For
sample PS1 with the lowest polymer molecular weight we
have also light-scattering data obtained at an angle of 90°. A
Photocor setup was used to provide thermal stability and
temperature control at about 1 mK in the experiments �47�.
Light-scattering correlation functions were accumulated with
an ALV-5000/E correlator. The experimental data were ob-
tained at a sequence of temperatures starting at a temperature
of about 30 °C above the critical temperature Tc and de-
scending to Tc. Hence our measurements for each polymer
solution cover an appreciable temperature range.

In the immediate vicinity of the critical point light scat-
tering becomes strong and multiple-scattering effects could
become appreciable even in our thin sample. As described in
our preceding publication �7� we have performed a Monte
Carlo simulation to determine the multiple-scattering inten-
sity near the critical temperature in our samples. From this
analysis we found that at temperatures for which 	= �T
−Tc� /T�10−5 the corrections to the light-scattering intensi-
ties are primarily caused by double scattering only. The ef-
fect of double scattering on the decay rate of the fluctuations
at the scattering angles used in our experiments is expected
to be much smaller than its effect on the intensity of the
scattered light because at the angles of scattering that are
close either to zero or to 180° the distortion of the spectrum
of scattered light caused by the double scattering vanishes
�49�. The scattering angles of 30° and 150° are effectively
not too different from these limiting values. Hence by ex-
cluding in the analysis of the dynamic light-scattering data
any experimental data for 	�10−5 we assume that multiple-
scattering contributions to the decay rate will be small. This
assumption appears to be confirmed a posteriori by the ex-
perimental results �see Sec. IV C�. Additional supporting ar-
guments can be found in experimental results reported by
Aberle et al. �50�.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

A. Comparison with mode-coupling theory

The dynamic light-scattering data for sample PS1 with the
lower polymer molecular weight of 195 900 g mol−1 have
earlier been obtained in our laboratory �47�. The experimen-
tal dynamic intensity correlation functions of the scattered
light for this solution appear to decay exponentially with a
single decay rate that is twice the decay rate D�q�q2 of the
concentration fluctuations. An example of such an experi-
mental intensity correlation function �minus the baseline� is
shown in Fig. 2. The values for D�q�, related to the experi-

mental decay times �q via Eq. �1�, thus obtained for this
solution, are shown in Fig. 3 as a function of 	= �T−Tc� /T.
The experimental data were obtained at three different wave
numbers q=0.727�10−2, 2.02�10−2, and 2.73�10−1 nm−1

associated with the three scattering angles =30°, 90°, and
150°, respectively. These wave numbers correspond to val-
ues of qRg=0.086, 0.23, and 0.32 and, hence, wavelengths
are still larger than the radius of gyration of the polymers.

The behavior of the diffusion coefficient D�q� as a func-
tion of temperature is qualitatively similar to the behavior
found for simple molecular liquid mixtures �32�. At larger
values of T−Tc the fluctuations are in the hydrodynamic re-
gime, where q��1, and D�q� becomes the hydrodynamic
diffusion coefficient independent of q and, hence, indepen-
dent of the scattering angle. Closer to the critical tempera-
ture, where q��1, D�q� becomes independent of the tem-
perature. The question arises whether the dynamic critical
behavior of the polymer solution can be described quantita-
tively in terms of the same mode-coupling theory developed

FIG. 2. Normalized intensity correlation function g2�t�−1 for
sample PS1 with a polystyrene molecular weight of Mw

=195 900 g mol−1 at T−Tc=0.02 K, plotted as a function of the
delay time t. The data have been obtained at a scattering angle 
=90° �q=0.0197�10−2 nm−1�. The symbols represent the experi-
mental data; the solid curve represents a fit to g2�t�−1
=B0 exp�−2t /�q� with �q=5.2 ms �47�. For convenience of repre-
sentation here and in the following figures the correlation functions
g2�t�−1 have been normalized so that B0=1.

FIG. 3. Diffusion coefficient D�q� of a solution �sample PS1� of
polystyrene �Mw=195 900 g mol−1� in cyclohexane as a function of
	= �T−Tc� /T. The symbols represent the experimental data ob-
tained at three scattering angles: =30°: open squares, =150°:
open circles, and =90°: crossed squares. The curves represent the
values calculated from the mode-coupling theory with an apparent
�mesoscopic� viscosity represented by the solid curve in Fig. 4.
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for the critical dynamics of simple molecular liquid mixtures
as reviewed in Sec. II A. Lao et al. �14� have earlier reported
dynamic light-scattering measurements and viscosity mea-
surements for a critical solution of polystyrene in cyclohex-
ane with the same nominal polymer molecular weight of
196 kg mol−1 and they did not find a satisfactory agreement
with the mode-coupling theory. From an analysis of the ex-
perimental data shown in Fig. 3, Jacob et al. �47� also con-
cluded that the mode-coupling theory could not explain the
dynamic light-scattering measurements for this polymer so-
lution. When they tried to fit the experimental data for D�q�
to Eq. �2�, substituting the experimental viscosity data ob-
tained by Lao et al. �14� into Eq. �6� for the critical part �cD,
they needed a magnitude for the background contribution Db
that appeared to be unphysically large. Moreover, even as-
suming the presence of such a large background contribu-
tion, they still were not able to get agreement for the differ-
ent scattering angles simultaneously.

Izumi �51� has proposed to reconcile the dynamic light-
scattering data obtained by Lao et al. �14� with the mode-
coupling theory by replacing the static correlation length � in
Eq. �6� for �cD with an effective correlation length. While
there could be a small difference between the static correla-
tion length and the hydrodynamic radius in the Stokes-
Einstein relation, we consider it improbable that the differ-
ence can be sufficiently large to account for the significant
apparent deviations from the predictions of the mode-
coupling theory. Here we consider as an alternative explana-
tion the possibility that the actual viscosity in the Stokes-
Einstein relation can be an effective local viscosity that
differs from the macroscopic hydrodynamic viscosity of the
polymer solution. In principle, one should be able to get a
realistic estimate for the background contribution Db from
Eq. �9�. A minor problem arises that the available viscosity
data �14� for this solution are not extensive enough to make
a clear separation between the background viscosity �b and
the critical-enhancement contribution to the viscosity. Hence
we are not able to calculate a priori the amplitude Q0 in Eq.
�5� and the cutoff number qC from Eq. �10�. However,
Burstyn et al. have made a detailed dynamic-light-scattering
study near the critical point of a mixture of nitroethane and
3-methylpentane �32,43,52,53�. This liquid mixture has the
special property that the difference between the refractive
indices of the two liquid components is sufficiently small so
that double scattering remains small even at temperatures
within a millidegree from the critical temperature, while at
the same time sufficiently large so that the light scattering
can still be attributed to the concentration fluctuations.
Burstyn et al. �32� found excellent agreement of the dynamic
light-scattering data with the mode-coupling theory with
qC

−1�qD
−1 �=0.18 nm�. We are, therefore, assuming that for

our polymer solution qC
−1 in Eq. �9� can be approximated by

qD
−1=�D �=4.8 nm�. In estimating Db from Eq. �9� we have in

practice neglected the small difference between the back-
ground viscosity �b and the actual viscosity �. Figure 3
shows a comparison between the experimental data and the
values calculated for D�q� from Eq. �2� with the experimen-
tal correlation length � in accordance with Eq. �8�, but with
the viscosity � in Eq. �6� replaced by an apparent viscosity

�app obtained by treating it as an adjustable quantity. The
apparent viscosity �app, thus extracted from our dynamic
light-scattering data, is presented as a function of tempera-
ture in Fig. 4. As mentioned earlier, the viscosity of a poly-
styrene solution in cyclohexane with the same polymer
weight has been measured by Lao et al. �14�, while the vis-
cosity �s of the solvent �54� can be represented by a simple
Arrhenius formula:

�s�T� = A exp�B/T� �14�

with parameters A=0.007 26 cP and B=1434 K for cyclo-
hexane. From Fig. 4 we see that the effective viscosity in the
mode-coupling theory differs from both the macroscopic vis-
cosity of the solution and the macroscopic viscosity of the
solvent; but by attributing this effective value for the viscos-
ity in the Stokes-Einstein relation we obtain an excellent
representation of the experimental diffusion-coefficient data
as can be seen from Fig. 2. The important point to note is
that we are obtaining excellent quantitative agreement with
the data from the different scattering angles in terms of the
same values for �app, which confirms the internal consistency
of our interpretation of the mode-coupling theory. We con-
clude that the data are consistent with the mode-coupling
theory in terms of an effective viscosity �app that depends on
the size of the polymers in the solution, but which is inde-
pendent of the wave number q of the fluctuations. We inter-
pret �app as a mesoscopic viscosity that characterizes the
hydrodynamic environment of the polymer molecules. We
shall return to this concept of a mesoscopic viscosity in Sec.
IV D.

B. Relaxation times

Unlike for sample PS1 with the lower polymer molecular
weight, the experimental time-dependent correlation func-
tions for all the other samples with higher polymer molecular
weights exhibit appreciable deviations from single-expo-
nential behavior. Moreover, the shape of the correlation func-

FIG. 4. Apparent �mesoscopic� viscosity of a solution �sample
PS1� of polystyrene �Mw=195 900 g mol−1� in cyclohexane as a
function of 	= �T−Tc� /T obtained by fitting the experimental light-
scattering data to the theoretical prediction of the mode-coupling
theory of critical dynamics. The data for the three scattering angles
are represented by the same symbols as in Fig. 3. The solid curve is
a fit to the data. The dashed curve represents the viscosity of the
solution �14� and the dotted curve represents the viscosity of the
solvent �cyclohexane� �54�.
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tion changes significantly with temperature as shown in Fig.
5 for sample PS5 with a polymer molecular weight of 11.4
�106 g mol−1. As a first step we shall discuss an analysis of
the experimental correlation functions in terms of a Laplace
inversion regularization procedure �CONTIN� �55� that is
built in the ALV-5000/E correlator software and which pro-
vides a distribution of the decay times. This will indicate the
evolution of this distribution with temperature as the critical
point is approached. As a second step we shall then show
explicitly that the observed behavior of the decay times can
be interpreted as resulting from a dynamic coupling between
critical concentration fluctuations and viscoelastic relaxation
of the polymers.

The Laplace inversion regularization procedure yields the
distribution H��� of decay times associated with the dynamic
correlation function. An advantage of the regularization pro-
cedure is that it does not imply any specific physical model
for the relaxation process. It is an additional test to check
whether the data can be interpreted in terms of the theory of
coupled dynamics, which predicts only two dynamic modes
for homopolymer solutions. However, the regularization pro-
cedure is rather sensitive to any low noise in the scattering
data. Therefore to obtain enough high-quality intensity cor-
relation functions g2�t�, we used long accumulation times of
up to 1 h. As an example of our data we showed in Fig. 5 the
correlation functions g2�t� obtained for the sample PS5 at
various temperatures. A three-dimensional representation of
the decay-time distributions H��� extracted from these corre-
lation functions is shown in Fig. 6�a� as a function of 	
= �T−Tc� /T. All distributions are normalized by their inte-
grals, thus the narrower the distribution, the higher the peak.
Figure 6�b� shows a projection of the decay-time distribu-
tions onto the two-dimensional 	 versus � plane with a gray-
scale indicating the magnitude of H���. Such a two-dimen-

sional projection, which provides information similar to that
of a spectrum on a photographic plate, eliminates to some
extent unavoidable random scatter of the shape of the decay-
time distributions and makes it easier to grasp the entire pic-
ture of the evolution of the dynamic modes as a function of
temperature. One can clearly distinguish two relaxation
modes that change significantly upon the approach to the
critical temperature. Far away from the critical temperature
one can see a fast mode with a high peak and a slow mode
with a low peak. Closer to the critical temperature, the inten-
sity of the fast mode decreases and that of the slow mode
increases. The shape of the corresponding dynamic correla-
tion function in the near-vicinity of the critical temperature
becomes again close to a single-exponential and the charac-
teristic decay time exceeds a second.

A representative dynamic correlation function g2�t�,
namely, the one obtained for PS5 at �T−Tc�=0.779 K, is
shown in Fig. 7 as a function of t. As can be seen in the
figure, g2�t� does not follow a single exponential decay. The
question we want to address is whether the observed time
dependence of g2�t� can be interpreted in terms of two relax-
ation times that arise from a coupling between two original
soft modes, namely, the diffusion mode associated with the
relaxation of critical fluctuations as discussed in Sec. II B
and a viscoelastic mode associated with entanglements of
polymer chains. As a first step we show in Fig. 7 a deviation

FIG. 5. Normalized intensity correlation functions g2�t�−1 as a
function of the delay time t for sample PS5 with a polymer molecu-
lar weight of Mw=11.4�106 g mol−1 at various values of the di-
mensionless temperature difference 	= �T−Tc� /T. �a� =30°, and
�b� =150°. From left to right the value of 	 associated with the
curves decreases from 10−1 to 10−5.

FIG. 6. �a� Three-dimensional equal-area representation of the
Laplace inversions H��� as a function of 	= �T−Tc� /T for sample
PS5 with a polymer molecular weight of Mw=11.4�106 g mol−1 at
=30°. �b� Two-dimensional projection of the decay-time distribu-
tions H��� in a grayscale indicating the magnitude of H���. The
solid curves represent the relaxation times �+ and �− of the two
coupled modes calculated from Eq. �12�. The dashed curve repre-
sents the theoretical prediction for the original diffusive relaxation
time �q of the critical concentration fluctuations as calculated from
Eq. �17�; the dotted curve represents the theoretical prediction for
the original relaxation time �ve of the viscoelastic mode of the poly-
mers in the solution as calculated from Eq. �16�.
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plot when g2�t�−1 is fitted to the theoretical expression �11�
in terms of the sum of two exponentials. While the devia-
tions are significantly smaller than those obtained when
g2�t�−1 is fitted to a single exponential, the deviations are
still systematic. From the images of H��� in Fig. 6 we see
that the decay-time distributions of the two modes have a
finite width, a phenomenon that has not been accounted for
in Eq. �11�. Hence as a next step we replace the two regular
exponentials in Eq. �11� by two stretched exponentials and fit
the experimental correlation functions to the following modi-
fication of Eq. �11�:

g2�t� − 1 = � f+ exp�−
t

�+
��+

+ f− exp�−
t

�−
��−�2

, �15�

where �+ and �− are exponents that control the width of the
two decay-time distributions. From Fig. 7 we see that Eq.
�15� does yield a good representation of the experimental
correlation function. The values obtained for the two expo-
nents �+ and �− are shown in Fig. 8. These exponents vary
only weakly with temperature in most of the relevant tem-
perature range; the exponent �+ is significantly smaller than
�− indicating that the faster mode has a somewhat wider
decay-time distribution.

We note that the values of both exponents �+ and �− in
Fig. 8 differ from unity. Thus both coupled dynamic modes
are broadened. In the absence of coupling, the diffusion
mode associated with the critical concentration fluctuations
should be narrow because the molecular-weight distributions
for our nearly monodisperse polymer samples are narrow.
Therefore we had expected that in the presence of coupling
the mode of the concentration fluctuations would remain nar-

row while the viscoelastic relaxation mode would exhibit
some width �see Eq. �16� in Ref. �56� and corresponding
references therein�. Our data show that as a result of cou-
pling both modes have variable widths even for nearly
monodisperse polymer solutions.

Figure 9 shows the values obtained for the amplitudes f+
and f− as a function of 	= �T−Tc� /T, when Eq. �15� is fitted
to the correlation functions displayed in Fig. 5�a�. It is seen
that far away from the critical temperature the amplitude f+
of the faster mode is larger than the amplitude f− of the
slower mode. However, when the critical temperature is ap-
proached, the intensity of the slower mode increases rapidly,
while that of the faster mode decreases and becomes small.
Thus far above the critical temperature the faster mode domi-
nates, but close to the critical temperature the slow mode
dominates. Between these extremes, the data can be repre-
sented by a sum of two stretched exponentials indicating that
both modes contribute to the observed light scattering.

We have analyzed the correlation functions obtained for
all samples by the procedure elucidated above. The two-
dimensional grayscale projections of the decay-time distribu-
tions H��� and the two decay times �+ and �−, obtained by
fitting the experimental correlation-function data to Eq. �15�,

FIG. 7. Upper part of figure: g2�t�−1 as a function of the delay
time t for sample PS5 with a polystyrene molecular weight of Mw

=11.4�106 g mol−1 at =30° and T−Tc=0.002 54 K. The symbols
indicate the experimental data. The dotted curve represents single-
exponential decay. The solid curve represents the values calculated
from Eq. �15�. Lower part of figure: Symbols show deviations of
the experimental data from a sum of two stretched exponentials as
given by Eq. �15�; dashed curve shows deviations of the experimen-
tal data from a sum of two exponentials as given by Eq. �11�.

FIG. 8. Exponents �+ �crossed circles� and �− �open circles� as
a function of 	= �T−Tc� /T for sample PS5 at =150°, indicating
the distribution of decay times for the coupled fast and slow modes,
respectively, when the correlation-function data are fitted to Eq.
�15� as shown in Fig. 7.

FIG. 9. Amplitudes f+ and f− indicating the intensity of the
coupled fast and slow modes as a function of 	= �T−Tc� /T for
sample PS5 at =150°. The symbols represent the values of f+

�crossed circles� and f− �open circles� when the correlation-function
data are fitted to Eq. �15�. The solid curves represent the values
calculated from Eq. �13�.
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are presented in Figs. 10–13 for samples PS5, PS4, PS3, and
PS2, respectively. For each sample we show the results from
the scattering at the two scattering angles 30° and 150°
which correspond to wave numbers q such that qRg=0.65
and 2.43 for sample PS5, qRg=0.38 and 1.42 for sample
PS4, qRg=0.27 and 1.01 for sample PS3, and qRg=0.21 and
0.76 for sample PS2. In all cases we find that the time de-
pendence of the experimental correlation functions can be
represented in terms of a sum of two stretched exponentials
corresponding to two distinct separate modes: a faster mode
with decay time �+ and a slower mode with decay time �−.

C. Avoided crossing of relaxation modes and anomalous
critical slowing down of fluctuations

The theory of Brochard and de Gennes for the dynamic
coupling between two modes relates the observed relaxation
times �± to the relaxation times �ve and �q of the two un-
coupled modes. We expect the viscoelastic relaxation time
�ve not to depend on the wave number q and to be propor-
tional to �s /T �44�. Hence we represent this viscoelastic re-
laxation time by an equation of the form

�ve = �ve,c
�s�T�Tc

�s�Tc�T
, �16�

where �s�T� is the viscosity of the solvent given by Eq. �14�,
and where the coefficient �ve,c is the viscoelastic relaxation
time at T=Tc. Since the viscosity of the solvent does not
exhibit any anomalous behavior at the critical temperature,
the viscoelastic relaxation time �ve is only a slowly varying
function of temperature, so that �ve,c in Eq. �16� can be iden-
tified with the viscoelastic relaxation time in the near-critical
temperature range. The diffusive relaxation time �q of the
critical concentration fluctuations does depend on the wave
number q. From Eqs. �1�, �2�, �6�, and �9� we conclude that it
can be represented by

�q
−1 =

RDkBT

6���
K�q���1 + �q�

2
�2�z�/2

��qD��q2

+
kBT

16�b�
�1 + q2�2

qC�
�q2 �17�

with ��qD�� given by Eq. �7�. From Eq. �5� it follows that
the viscosity will depend on ��T−Tc� /T�−0.043 with a coeffi-
cient that is proportional to the background viscosity �b. In
the absence of experimental viscosity data, we have assumed
that this background viscosity has the same Arrhenius-type
temperature dependence as the solvent viscosity �s�T�. We
thus represent the viscosity in Eq. �17� by an equation of the
form

FIG. 10. Distributions of the relaxation times as a function of
	= �T−Tc� /T for sample PS5 with a polystyrene molecular weight
of Mw=11.4�106 g mol−1 at =30° �a� and =150° �b�. The gray-
scale represents the magnitude of the distribution as in Fig. 6�b�.
The symbols represent the values for the two coupled modes ex-
tracted from a fit of the correlation-function data to Eq. �15�. The
solid curves represent the relaxation times �+ and �− of the two
coupled modes calculated from Eq. �12�. The dashed curves repre-
sent the theoretical predictions for the original diffusive relaxation
time �q of the critical concentration fluctuations as calculated from
Eq. �17� and the dotted curves the theoretical predictions for the
original relaxation time �ve of the viscoelastic mode of the polymers
in the solution as calculated from Eq. �16�.

FIG. 11. Same as Fig. 10, but for sample PS4 with a polystyrene
molecular weight of Mw=3.90�106 g mol−1.
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� = �0�T − Tc

T
�−0.043

�s�T� , �18�

where �s�T� is again given by Eq. �14� and where �0 is a
coefficient to be treated as an adjustable parameter. In esti-
mating the background contribution on the right-hand side of
Eq. �17� we have approximated �b by Eq. �18� also. From the
analysis of the experimental data for sample PS1, previously
described in Sec. IV A, we expect that the viscosity in Eq.
�17� is a mesoscopic viscosity characteristic for the hydrody-
namic environment of the polymer molecules.

We have fitted the data deduced from our dynamic light-
scattering experiments for the two relaxation times �+ and �−
to Eq. �12� using the viscoelastic length �ve, the viscoelastic
relaxation time �ve,c in Eq. �16�, and the viscosity coefficient
�0 in Eq. �18� as adjustable parameters. The values thus cal-
culated from Eq. �12� for �+ and �− are represented as a
function of 	= �T−Tc� /T by the solid curves in Figs. 10–13.
As mentioned above, the intensity of the fast mode becomes
very small in the near-vicinity of the critical temperature as
can be seen in Fig. 9. Hence it is difficult to deduce accurate
experimental values for the relaxation time �+ of the fast
mode in the near-vicinity of the critical temperature.

For the sample PS5 with large polymer molecules and at
the large scattering angle of 150° we see a picture of dy-
namic modes in Fig. 10 that seems to differ from all others.
Neither of the two dynamic modes decreases significantly as
the critical temperature is approached. The slow mode does
not yet become dominant near the critical temperature in
contrast to the other cases. Also, the modes overlap and ex-
hibit essential widths. That in this case the slow mode does
not dominate near the critical point is actually not a surprise,

since the avoided crossing of modes is not completed here.
As can be seen in Fig. 10, the curves that show uncoupled
modes do not cross. The reason is the well-known saturation
of critical slowing down in accordance with the Kawasaki
function K�q�� in Eq. �6� for q��1. For PS5 with the largest
polymer molecules and the largest scattering angle 150° this
saturation extends over a longer range than for all other
samples. Also, the elevated width of modes may be attributed
to the conditions when the instrumental length becomes
smaller than the macromolecular size �qRg�1�. At these
conditions a wider distribution of characteristic times of en-
tanglement at broad length scales is expected.

In Fig. 13 we show the plot for the sample PS2 �Mw

=1.124�106 g mol−1�, where the avoided crossing pattern is
well-recognized for the large angle of scattering rather than
for the small angle. Therefore we show also the result of the
fits to a single stretched exponential. It exhibits additional
slowing down near the critical point on the back of conven-
tional critical slowing down depicted with dashes. The cor-
relation functions for PS2 obtained in the experiment have
obvious deviations from a single exponential. In Fig. 13 we
observe a crossover of the dynamic mode between theoreti-
cal predictions for the two coupled modes. Compared to the
slow predicted mode the actual dynamic mode exhibits ad-
ditional slowing down on the top of critical slowing down.
This picture is similar to that shown in Fig. 4 for the sample
PS1 with smaller polymer chains. For the sample PS1 the
coupling of two dynamic modes observed at the given probe
length q−1 appears to be weak and could be described in
terms of an effective viscosity.

The agreement between theory and experiment is gener-
ally much better for the dominant slow mode, which can be
measured more accurately. Moreover, the assumption of a

FIG. 12. Same as Fig. 10, but for sample PS3 with a polystyrene
molecular weight of Mw=1.95�106 g mol−1.

FIG. 13. Same as Fig. 10, but for sample PS2 with a polystyrene
molecular weight of Mw=1.124�106 g mol−1. Fit to a single
stretched exponential: diamonds.
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single relaxation time for the dynamics associated with poly-
mer entanglements may be an oversimplification �44�. We
conclude that dynamic coupling between the two relaxation
modes does yield a physical explanation of the temperature
dependence of our experimental data, especially for the ob-
served dominant slow mode.

With the relevant viscoelastic parameters �ve and �ve, de-
duced from the experimental relaxation times �+ and �−, it
becomes possible to predict the magnitude of the amplitudes
f+ and f− of the two coupled modes from Eq. �13� of the
theory of Brochard and de Gennes. The theoretical values
obtained from Eq. �13� for these amplitudes are represented
by the solid curves in Fig. 9. While the agreement is not
perfect, the theory of Brochard and de Gennes does yield a
good qualitative physical description of the temperature de-
pendence of the two coupled modes and does account for the
essential physics of the phenomenon.

In Figs. 10–13 we also show the relaxation times �ve and
�q of the two uncoupled modes as predicted by Eqs. �16� and
�17�. We see that far above the critical temperature the origi-
nal uncoupled viscoelastic mode decays more slowly than
the critical concentration fluctuations, but near the critical
temperature the fast mode is more closely associated with
viscoelastic relaxation and the slow mode more closely with
the diffusive critical concentration fluctuations. However, it
is evident that in the critical region none of the coupled
modes can be identified either with a pure structural relax-
ation mode or with a pure diffusive concentration-fluctuation
mode. Asymptotically close to the critical temperature the
position of the relaxation time �− of the slow mode is shifted
with respect to the decay time �q of the uncoupled critical
diffusion mode such that �−=�q�1+q2�ve

2 �, whereas the posi-
tion of the relaxation time �+ of the fast mode is shifted to
shorter times with respect to the viscoelastic relaxation time
�ve such that �+=�ve�1+q2�ve

2 �−1. We emphasize that the ad-
ditional critical slowing down at nanoscales is quite signifi-
cant. For example, from Fig. 10�a� we see that in a solution
with a polymer molecular weight of 11.4�106 at a scattering
angle of 30°, where length scales of about q−1=137 nm are
probed and where �ve reaches 200 nm, the slow mode is
shifted from 0.4 to 1.5 s. At larger scattering angles and,
consequently, at lower length scales this shift increases sig-
nificantly. We may attribute this additional critical slowing
down to viscoelasticity associated with the entanglement net-
works of the polymers affected by critical fluctuations. One
should note that this effect of an additional critical slowing
down at smaller scales �larger q� is opposite to the well-
known critical slowing down in simple molecular liquid mix-
tures, which becomes more pronounced at larger scales
�smaller q�.

We note again from Figs. 10–13 that far above the critical
temperature the original uncoupled viscoelastic mode decays
more slowly than the critical concentration fluctuations.
While the relaxation times �ve and �q of the two uncoupled
modes have a tendency to cross each other when the critical
temperature is approached, the coupled faster mode remains
the faster mode and the coupled slower mode remains the
slower mode at all temperatures. This is an example of a
well-known phenomenon of “avoided crossing” of soft
modes. As was mentioned in the Introduction, it is a general

phenomenon well-known in frequency domain, which we
observe in the time domain. It has also been encountered in
the dynamics of sheared polymer solutions �21� and in binary
molecular fluid mixtures near vapor-liquid critical points
�22�. The difference with polymer solutions is that in mo-
lecular fluid mixtures the two original uncoupled modes be-
long to the same dynamic universality class �31�, while in
polymer solutions the coupling is between a diffusive mode
and a viscoelastic mode.

In Sec. III we have argued that multiple-scattering effects
on the dynamics of the fluctuations should be negligibly
small for our dynamic light-scattering data at the reduced
temperatures 	= �T−Tc� /T�10−5. Multiple scattering would
dramatically affect the correlation functions close to Tc
�57,58�. However, from Figs. 9–13 we see that most of the
temperature dependence of the dynamic correlation functions
is observed at temperatures somewhat away from the critical
temperature. Avoided crossing of the modes observed in our
experiments actually occurs at temperatures of about 1 K
away from the critical temperature where multiple-scattering
effects are negligible. Furthermore, upon the approach to the
critical temperature, both �+ and �− are increasing monotoni-
cally and in the near vicinity of the critical temperature the
amplitudes and relaxation times of the modes become insen-
sitive to the temperature distance from the critical tempera-
ture. On the other hand, it has been shown that, when
multiple scattering becomes important in dynamic light-
scattering experiments, it would cause a rapid decrease of the
characteristic decay time of the correlation function when the
critical temperature is approached �57,58�. After this dra-
matic decrease of the characteristic decay time it should then
ultimately saturate, but this saturation takes place only in the
immediate vicinity of the critical point when multiple light
scattering leads to the phenomenon of photon diffusion in
strongly scattering media. We do not observe such a decrease
of the decay times. We do not observe any fast mode like the
mode reported in Ref. �48�, which essentially increased near
the critical point and therefore could be attributed to multiple
scattering. In contrast, the amplitude of the fast mode in our
experiments always decreased with approach to the critical
point. Also, our computer simulations of multiple scattering
have shown that at 	= �T−Tc� /T�10−5 we are far away
from the photon-diffusion regime �7�. Hence the data in Figs.
9–13 confirm that any effects of multiple scattering on the
dynamic correlation functions in our study are negligibly
small and the data are in agreement with a theory of critical
behavior that accounts for a coupling of the concentration
fluctuations with a viscoelastic relaxation mode.

D. Critical fluctuations and microrheology

From our analysis of the experimental data in terms of the
theory for dynamic coupling we can deduce values for the
viscoelastic length �ve, the viscoelastic relaxation time �ve,c
��ve, and the coefficient �0 in Eq. �18�, which is a measure
of the mesoscopic viscosity in terms of the solvent viscosity
�s�T�. The values of these viscoelastic parameters are pre-
sented in Table I�B� and they are shown in Fig. 14 as a
function of the polymer molecular weight Mw. We find that
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these viscoelastic parameters apparently diverge along the
critical line in the limit of infinite molecular weight �theta-
point limit� approximately as �ve�Mw

0.5, �ve�Mw
1.3, and �0

�Mw
0.6. We note that �ve scales more weakly with Mw than

the theoretical prediction Mw
9/4 for the “disentanglement

time” in theta solvents at overlap concentration �44�, while
�ve scales as the radius of gyration Rg�Mw

0.5 �5,59�. From
Fig. 14 we also see that the effective mesoscopic viscosity
that appears in the dynamic coupling of the modes is consis-
tent with the effective mesoscopic viscosity in the mode-
coupling theory for the dynamic critical behavior of the
sample PS1 with the lower polymer molecular weight.

We conclude that dynamic light-scattering experiments
enable us to probe viscoelastic properties of polymers in so-
lution �60�. A coupling between diffusionlike and structural
relaxation modes should be expected whenever such modes
are close to each other. By changing the proximity of the
temperature from the critical temperature we are able to vary
the diffusive decay time over several decades in time. By
scanning the diffusive decay times as a function of tempera-
ture, composition, or pressure it becomes possible to probe
the viscoelastic mode and to obtain the characteristic pattern
of avoided crossing. By selecting an appropriate solvent or
cosolvent so that the system will exhibit critical phase-
separation behavior, it should be possible to pursue mi-
crorheological behavior with dynamic-mode scanning. This
method could be used for measurements in a variety of mac-
romolecular solutions in which critical fluctuations couple
with a mesoscopic structure and/or viscoelastic relaxation.
Examples are supercritical fluids �48�, polymer blends �61�,
polymer solutions under shear �21�, micellar solutions �62�,
and microemulsions �63,64�, as well as systems important in
biophysics and biochemistry, such as solutions of polyelec-
trolytes or biopolymers �65,66�. Probing structural relaxation
with critical fluctuations called “critical microrheology”

could provide an alternative to probing viscoelastic behavior
with the aid of probe particles �67–70�.

V. SUMMARY

We have obtained dynamic light-scattering measurements
of critical fluctuations in solutions of polystyrene in cyclo-
hexane with polymer molecular weights from 195 900 to
11.4�106 g mol−1. In the solution with the lowest polymer
molecular weight the dynamic correlation function exhibits a
single-exponential decay with a decay rate that can be rep-
resented by the mode-coupling theory of critical dynamics
provided that the viscosity is identified with a mesoscopic
viscosity that characterizes the local hydrodynamic environ-
ment of the polymer molecules in the solution. This mesos-
copic viscosity differs from the viscosity of the solution, as
well as from the viscosity of the solvent.

The dynamic correlation functions in the polymer solu-
tions with higher polymer molecular weights show substan-
tial deviations from a single-exponential decay. The time de-
pendence of these correlation functions can be interpreted as
arising from a coupling of the critical fluctuations with the
viscoelastic relaxation of the polymers in the solution. Near-
critical polymer solutions exhibit this coupling effectively
for large polymer coils when qRg�1. While the relaxation
times of the two original uncoupled modes are predicted to
cross as a function of temperature, the relaxation times of the
two coupled modes never cross. The intensity of the faster
mode decreases and becomes small when the critical tem-
perature is approached. The intensity of the slower mode
increases when the critical temperature is approached and
becomes the dominant mode in the near-vicinity of the criti-
cal temperature. This slower mode exhibits an anomalous
slowing down on top of the well-known critical slowing
down predicted by the mode-coupling theory of critical dy-
namics. This phenomenon results from a coupling of the vis-
coelastic relaxation mode with the critical fluctuations and,
in contrast to the conventional critical slowing down of the
fluctuations, this additional slowing down of the fluctuations
is significant at nanolength scales �large q�.

The dynamic light-scattering measurements of the critical
fluctuations have enabled us to determine the viscoelastic
parameters associated with the dynamics of the polymers in
the solution, namely a viscoelastic length, a viscoelastic re-
laxation time, and a mesoscopic viscosity characterizing the
local hydrodynamic environment of the polymers. Thus dy-
namic light-scattering in macromolecular critical solutions
provides a possible method for obtaining microrheological
information for such macromolecules in solution.
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FIG. 14. Viscoelastic length �ve �crossed circles, left axis�, vis-
coelastic relaxation time �ve,c��ve �solid circles, left axis�, and the
mesoscopic viscosity �0 �open circles, right axis� in terms of the
solvent viscosity �s as a function of the polymer molecular weight
Mw. The dashed lines show slopes of 0.51, 0.64, and 1.3, respec-
tively. The square indicates the macroscopic viscosity of the poly-
mer solution with Mw=195 900 g mol−1 as reported by Lao et al.
�14�.
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